| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
⊢ 𝑦 ∈ V |
| 2 |
1
|
elpr |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
| 3 |
2
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) ) |
| 4 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) ↔ ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) ) |
| 5 |
|
andir |
⊢ ( ( ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ∧ 𝑥 ∈ 𝑦 ) ↔ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 6 |
4 5
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) ↔ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 7 |
3 6
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 8 |
7
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ∃ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 9 |
|
19.43 |
⊢ ( ∃ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 10 |
8 9
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 11 |
|
clel3g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 12 |
11
|
bicomd |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 14 |
|
clel3g |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ) |
| 15 |
14
|
bicomd |
⊢ ( 𝐵 ∈ 𝑊 → ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 17 |
13 16
|
orbi12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∨ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 ∈ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 18 |
10 17
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 19 |
18
|
abbidv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) } ) |
| 20 |
|
df-uni |
⊢ ∪ { 𝐴 , 𝐵 } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) } |
| 21 |
|
df-un |
⊢ ( 𝐴 ∪ 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) } |
| 22 |
19 20 21
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |