Step |
Hyp |
Ref |
Expression |
1 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝑦 } = { 𝐴 , 𝑦 } ) |
2 |
1
|
unieqd |
⊢ ( 𝑥 = 𝐴 → ∪ { 𝑥 , 𝑦 } = ∪ { 𝐴 , 𝑦 } ) |
3 |
|
uneq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∪ 𝑦 ) = ( 𝐴 ∪ 𝑦 ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ∪ { 𝑥 , 𝑦 } = ( 𝑥 ∪ 𝑦 ) ↔ ∪ { 𝐴 , 𝑦 } = ( 𝐴 ∪ 𝑦 ) ) ) |
5 |
|
preq2 |
⊢ ( 𝑦 = 𝐵 → { 𝐴 , 𝑦 } = { 𝐴 , 𝐵 } ) |
6 |
5
|
unieqd |
⊢ ( 𝑦 = 𝐵 → ∪ { 𝐴 , 𝑦 } = ∪ { 𝐴 , 𝐵 } ) |
7 |
|
uneq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∪ 𝑦 ) = ( 𝐴 ∪ 𝐵 ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ∪ { 𝐴 , 𝑦 } = ( 𝐴 ∪ 𝑦 ) ↔ ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) ) |
9 |
|
vex |
⊢ 𝑥 ∈ V |
10 |
|
vex |
⊢ 𝑦 ∈ V |
11 |
9 10
|
unipr |
⊢ ∪ { 𝑥 , 𝑦 } = ( 𝑥 ∪ 𝑦 ) |
12 |
4 8 11
|
vtocl2g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |