Metamath Proof Explorer


Theorem unipw

Description: A class equals the union of its power class. Exercise 6(a) of Enderton p. 38. (Contributed by NM, 14-Oct-1996) (Proof shortened by Alan Sare, 28-Dec-2008)

Ref Expression
Assertion unipw 𝒫 𝐴 = 𝐴

Proof

Step Hyp Ref Expression
1 eluni ( 𝑥 𝒫 𝐴 ↔ ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ 𝒫 𝐴 ) )
2 elelpwi ( ( 𝑥𝑦𝑦 ∈ 𝒫 𝐴 ) → 𝑥𝐴 )
3 2 exlimiv ( ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ 𝒫 𝐴 ) → 𝑥𝐴 )
4 1 3 sylbi ( 𝑥 𝒫 𝐴𝑥𝐴 )
5 vsnid 𝑥 ∈ { 𝑥 }
6 snelpwi ( 𝑥𝐴 → { 𝑥 } ∈ 𝒫 𝐴 )
7 elunii ( ( 𝑥 ∈ { 𝑥 } ∧ { 𝑥 } ∈ 𝒫 𝐴 ) → 𝑥 𝒫 𝐴 )
8 5 6 7 sylancr ( 𝑥𝐴𝑥 𝒫 𝐴 )
9 4 8 impbii ( 𝑥 𝒫 𝐴𝑥𝐴 )
10 9 eqriv 𝒫 𝐴 = 𝐴