| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ecexg | ⊢ ( 𝑅  ∈  𝑉  →  [ 𝑥 ] 𝑅  ∈  V ) | 
						
							| 2 | 1 | ralrimivw | ⊢ ( 𝑅  ∈  𝑉  →  ∀ 𝑥  ∈  𝐴 [ 𝑥 ] 𝑅  ∈  V ) | 
						
							| 3 |  | dfiun2g | ⊢ ( ∀ 𝑥  ∈  𝐴 [ 𝑥 ] 𝑅  ∈  V  →  ∪  𝑥  ∈  𝐴 [ 𝑥 ] 𝑅  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] 𝑅 } ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑅  ∈  𝑉  →  ∪  𝑥  ∈  𝐴 [ 𝑥 ] 𝑅  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] 𝑅 } ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( 𝑅  ∈  𝑉  →  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] 𝑅 }  =  ∪  𝑥  ∈  𝐴 [ 𝑥 ] 𝑅 ) | 
						
							| 6 |  | df-qs | ⊢ ( 𝐴  /  𝑅 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] 𝑅 } | 
						
							| 7 | 6 | unieqi | ⊢ ∪  ( 𝐴  /  𝑅 )  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  [ 𝑥 ] 𝑅 } | 
						
							| 8 |  | df-ec | ⊢ [ 𝑥 ] 𝑅  =  ( 𝑅  “  { 𝑥 } ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑥  ∈  𝐴  →  [ 𝑥 ] 𝑅  =  ( 𝑅  “  { 𝑥 } ) ) | 
						
							| 10 | 9 | iuneq2i | ⊢ ∪  𝑥  ∈  𝐴 [ 𝑥 ] 𝑅  =  ∪  𝑥  ∈  𝐴 ( 𝑅  “  { 𝑥 } ) | 
						
							| 11 |  | imaiun | ⊢ ( 𝑅  “  ∪  𝑥  ∈  𝐴 { 𝑥 } )  =  ∪  𝑥  ∈  𝐴 ( 𝑅  “  { 𝑥 } ) | 
						
							| 12 |  | iunid | ⊢ ∪  𝑥  ∈  𝐴 { 𝑥 }  =  𝐴 | 
						
							| 13 | 12 | imaeq2i | ⊢ ( 𝑅  “  ∪  𝑥  ∈  𝐴 { 𝑥 } )  =  ( 𝑅  “  𝐴 ) | 
						
							| 14 | 10 11 13 | 3eqtr2ri | ⊢ ( 𝑅  “  𝐴 )  =  ∪  𝑥  ∈  𝐴 [ 𝑥 ] 𝑅 | 
						
							| 15 | 5 7 14 | 3eqtr4g | ⊢ ( 𝑅  ∈  𝑉  →  ∪  ( 𝐴  /  𝑅 )  =  ( 𝑅  “  𝐴 ) ) |