| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qsss.1 | ⊢ ( 𝜑  →  𝑅  Er  𝐴 ) | 
						
							| 2 |  | qsss.2 | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 3 |  | uniqs | ⊢ ( 𝑅  ∈  𝑉  →  ∪  ( 𝐴  /  𝑅 )  =  ( 𝑅  “  𝐴 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  ∪  ( 𝐴  /  𝑅 )  =  ( 𝑅  “  𝐴 ) ) | 
						
							| 5 |  | erdm | ⊢ ( 𝑅  Er  𝐴  →  dom  𝑅  =  𝐴 ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  dom  𝑅  =  𝐴 ) | 
						
							| 7 | 6 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑅  “  dom  𝑅 )  =  ( 𝑅  “  𝐴 ) ) | 
						
							| 8 | 4 7 | eqtr4d | ⊢ ( 𝜑  →  ∪  ( 𝐴  /  𝑅 )  =  ( 𝑅  “  dom  𝑅 ) ) | 
						
							| 9 |  | imadmrn | ⊢ ( 𝑅  “  dom  𝑅 )  =  ran  𝑅 | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( 𝜑  →  ∪  ( 𝐴  /  𝑅 )  =  ran  𝑅 ) | 
						
							| 11 |  | errn | ⊢ ( 𝑅  Er  𝐴  →  ran  𝑅  =  𝐴 ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  ran  𝑅  =  𝐴 ) | 
						
							| 13 | 10 12 | eqtrd | ⊢ ( 𝜑  →  ∪  ( 𝐴  /  𝑅 )  =  𝐴 ) |