Metamath Proof Explorer
Description: The union of an elementwise intersection is a subset of the underlying
set. (Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
unirestss.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
|
unirestss.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
|
Assertion |
unirestss |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) ⊆ ∪ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
unirestss.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
unirestss.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
1 2
|
restuni6 |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) = ( ∪ 𝐴 ∩ 𝐵 ) ) |
4 |
|
inss1 |
⊢ ( ∪ 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝐴 |
5 |
3 4
|
eqsstrdi |
⊢ ( 𝜑 → ∪ ( 𝐴 ↾t 𝐵 ) ⊆ ∪ 𝐴 ) |