| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unirnfdomd.1 | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ Fin ) | 
						
							| 2 |  | unirnfdomd.2 | ⊢ ( 𝜑  →  ¬  𝑇  ∈  Fin ) | 
						
							| 3 |  | unirnfdomd.3 | ⊢ ( 𝜑  →  𝑇  ∈  𝑉 ) | 
						
							| 4 | 1 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑇 ) | 
						
							| 5 |  | fnex | ⊢ ( ( 𝐹  Fn  𝑇  ∧  𝑇  ∈  𝑉 )  →  𝐹  ∈  V ) | 
						
							| 6 | 4 3 5 | syl2anc | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 7 |  | rnexg | ⊢ ( 𝐹  ∈  V  →  ran  𝐹  ∈  V ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  ran  𝐹  ∈  V ) | 
						
							| 9 |  | frn | ⊢ ( 𝐹 : 𝑇 ⟶ Fin  →  ran  𝐹  ⊆  Fin ) | 
						
							| 10 |  | dfss3 | ⊢ ( ran  𝐹  ⊆  Fin  ↔  ∀ 𝑥  ∈  ran  𝐹 𝑥  ∈  Fin ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝐹 : 𝑇 ⟶ Fin  →  ∀ 𝑥  ∈  ran  𝐹 𝑥  ∈  Fin ) | 
						
							| 12 |  | fict | ⊢ ( 𝑥  ∈  Fin  →  𝑥  ≼  ω ) | 
						
							| 13 | 12 | ralimi | ⊢ ( ∀ 𝑥  ∈  ran  𝐹 𝑥  ∈  Fin  →  ∀ 𝑥  ∈  ran  𝐹 𝑥  ≼  ω ) | 
						
							| 14 | 1 11 13 | 3syl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ran  𝐹 𝑥  ≼  ω ) | 
						
							| 15 |  | unidom | ⊢ ( ( ran  𝐹  ∈  V  ∧  ∀ 𝑥  ∈  ran  𝐹 𝑥  ≼  ω )  →  ∪  ran  𝐹  ≼  ( ran  𝐹  ×  ω ) ) | 
						
							| 16 | 8 14 15 | syl2anc | ⊢ ( 𝜑  →  ∪  ran  𝐹  ≼  ( ran  𝐹  ×  ω ) ) | 
						
							| 17 |  | fnrndomg | ⊢ ( 𝑇  ∈  𝑉  →  ( 𝐹  Fn  𝑇  →  ran  𝐹  ≼  𝑇 ) ) | 
						
							| 18 | 3 4 17 | sylc | ⊢ ( 𝜑  →  ran  𝐹  ≼  𝑇 ) | 
						
							| 19 |  | omex | ⊢ ω  ∈  V | 
						
							| 20 | 19 | xpdom1 | ⊢ ( ran  𝐹  ≼  𝑇  →  ( ran  𝐹  ×  ω )  ≼  ( 𝑇  ×  ω ) ) | 
						
							| 21 | 18 20 | syl | ⊢ ( 𝜑  →  ( ran  𝐹  ×  ω )  ≼  ( 𝑇  ×  ω ) ) | 
						
							| 22 |  | domtr | ⊢ ( ( ∪  ran  𝐹  ≼  ( ran  𝐹  ×  ω )  ∧  ( ran  𝐹  ×  ω )  ≼  ( 𝑇  ×  ω ) )  →  ∪  ran  𝐹  ≼  ( 𝑇  ×  ω ) ) | 
						
							| 23 | 16 21 22 | syl2anc | ⊢ ( 𝜑  →  ∪  ran  𝐹  ≼  ( 𝑇  ×  ω ) ) | 
						
							| 24 |  | infinf | ⊢ ( 𝑇  ∈  𝑉  →  ( ¬  𝑇  ∈  Fin  ↔  ω  ≼  𝑇 ) ) | 
						
							| 25 | 3 24 | syl | ⊢ ( 𝜑  →  ( ¬  𝑇  ∈  Fin  ↔  ω  ≼  𝑇 ) ) | 
						
							| 26 | 2 25 | mpbid | ⊢ ( 𝜑  →  ω  ≼  𝑇 ) | 
						
							| 27 |  | xpdom2g | ⊢ ( ( 𝑇  ∈  𝑉  ∧  ω  ≼  𝑇 )  →  ( 𝑇  ×  ω )  ≼  ( 𝑇  ×  𝑇 ) ) | 
						
							| 28 | 3 26 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  ×  ω )  ≼  ( 𝑇  ×  𝑇 ) ) | 
						
							| 29 |  | domtr | ⊢ ( ( ∪  ran  𝐹  ≼  ( 𝑇  ×  ω )  ∧  ( 𝑇  ×  ω )  ≼  ( 𝑇  ×  𝑇 ) )  →  ∪  ran  𝐹  ≼  ( 𝑇  ×  𝑇 ) ) | 
						
							| 30 | 23 28 29 | syl2anc | ⊢ ( 𝜑  →  ∪  ran  𝐹  ≼  ( 𝑇  ×  𝑇 ) ) | 
						
							| 31 |  | infxpidm | ⊢ ( ω  ≼  𝑇  →  ( 𝑇  ×  𝑇 )  ≈  𝑇 ) | 
						
							| 32 | 26 31 | syl | ⊢ ( 𝜑  →  ( 𝑇  ×  𝑇 )  ≈  𝑇 ) | 
						
							| 33 |  | domentr | ⊢ ( ( ∪  ran  𝐹  ≼  ( 𝑇  ×  𝑇 )  ∧  ( 𝑇  ×  𝑇 )  ≈  𝑇 )  →  ∪  ran  𝐹  ≼  𝑇 ) | 
						
							| 34 | 30 32 33 | syl2anc | ⊢ ( 𝜑  →  ∪  ran  𝐹  ≼  𝑇 ) |