Step |
Hyp |
Ref |
Expression |
1 |
|
unirnfdomd.1 |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ Fin ) |
2 |
|
unirnfdomd.2 |
⊢ ( 𝜑 → ¬ 𝑇 ∈ Fin ) |
3 |
|
unirnfdomd.3 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
4 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑇 ) |
5 |
|
fnex |
⊢ ( ( 𝐹 Fn 𝑇 ∧ 𝑇 ∈ 𝑉 ) → 𝐹 ∈ V ) |
6 |
4 3 5
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
7 |
|
rnexg |
⊢ ( 𝐹 ∈ V → ran 𝐹 ∈ V ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ran 𝐹 ∈ V ) |
9 |
|
frn |
⊢ ( 𝐹 : 𝑇 ⟶ Fin → ran 𝐹 ⊆ Fin ) |
10 |
|
dfss3 |
⊢ ( ran 𝐹 ⊆ Fin ↔ ∀ 𝑥 ∈ ran 𝐹 𝑥 ∈ Fin ) |
11 |
9 10
|
sylib |
⊢ ( 𝐹 : 𝑇 ⟶ Fin → ∀ 𝑥 ∈ ran 𝐹 𝑥 ∈ Fin ) |
12 |
|
fict |
⊢ ( 𝑥 ∈ Fin → 𝑥 ≼ ω ) |
13 |
12
|
ralimi |
⊢ ( ∀ 𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀ 𝑥 ∈ ran 𝐹 𝑥 ≼ ω ) |
14 |
1 11 13
|
3syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝐹 𝑥 ≼ ω ) |
15 |
|
unidom |
⊢ ( ( ran 𝐹 ∈ V ∧ ∀ 𝑥 ∈ ran 𝐹 𝑥 ≼ ω ) → ∪ ran 𝐹 ≼ ( ran 𝐹 × ω ) ) |
16 |
8 14 15
|
syl2anc |
⊢ ( 𝜑 → ∪ ran 𝐹 ≼ ( ran 𝐹 × ω ) ) |
17 |
|
fnrndomg |
⊢ ( 𝑇 ∈ 𝑉 → ( 𝐹 Fn 𝑇 → ran 𝐹 ≼ 𝑇 ) ) |
18 |
3 4 17
|
sylc |
⊢ ( 𝜑 → ran 𝐹 ≼ 𝑇 ) |
19 |
|
omex |
⊢ ω ∈ V |
20 |
19
|
xpdom1 |
⊢ ( ran 𝐹 ≼ 𝑇 → ( ran 𝐹 × ω ) ≼ ( 𝑇 × ω ) ) |
21 |
18 20
|
syl |
⊢ ( 𝜑 → ( ran 𝐹 × ω ) ≼ ( 𝑇 × ω ) ) |
22 |
|
domtr |
⊢ ( ( ∪ ran 𝐹 ≼ ( ran 𝐹 × ω ) ∧ ( ran 𝐹 × ω ) ≼ ( 𝑇 × ω ) ) → ∪ ran 𝐹 ≼ ( 𝑇 × ω ) ) |
23 |
16 21 22
|
syl2anc |
⊢ ( 𝜑 → ∪ ran 𝐹 ≼ ( 𝑇 × ω ) ) |
24 |
|
infinf |
⊢ ( 𝑇 ∈ 𝑉 → ( ¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇 ) ) |
25 |
3 24
|
syl |
⊢ ( 𝜑 → ( ¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇 ) ) |
26 |
2 25
|
mpbid |
⊢ ( 𝜑 → ω ≼ 𝑇 ) |
27 |
|
xpdom2g |
⊢ ( ( 𝑇 ∈ 𝑉 ∧ ω ≼ 𝑇 ) → ( 𝑇 × ω ) ≼ ( 𝑇 × 𝑇 ) ) |
28 |
3 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 × ω ) ≼ ( 𝑇 × 𝑇 ) ) |
29 |
|
domtr |
⊢ ( ( ∪ ran 𝐹 ≼ ( 𝑇 × ω ) ∧ ( 𝑇 × ω ) ≼ ( 𝑇 × 𝑇 ) ) → ∪ ran 𝐹 ≼ ( 𝑇 × 𝑇 ) ) |
30 |
23 28 29
|
syl2anc |
⊢ ( 𝜑 → ∪ ran 𝐹 ≼ ( 𝑇 × 𝑇 ) ) |
31 |
|
infxpidm |
⊢ ( ω ≼ 𝑇 → ( 𝑇 × 𝑇 ) ≈ 𝑇 ) |
32 |
26 31
|
syl |
⊢ ( 𝜑 → ( 𝑇 × 𝑇 ) ≈ 𝑇 ) |
33 |
|
domentr |
⊢ ( ( ∪ ran 𝐹 ≼ ( 𝑇 × 𝑇 ) ∧ ( 𝑇 × 𝑇 ) ≈ 𝑇 ) → ∪ ran 𝐹 ≼ 𝑇 ) |
34 |
30 32 33
|
syl2anc |
⊢ ( 𝜑 → ∪ ran 𝐹 ≼ 𝑇 ) |