Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union Finite sets (cont.) unirnffid  
				
		 
		
			
		 
		Description:   The union of the range of a function from a finite set into the class of
       finite sets is finite.  Deduction form.  (Contributed by David Moews , 1-May-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						unirnffid.1 ⊢  ( 𝜑   →  𝐹  : 𝑇  ⟶ Fin )  
					
						unirnffid.2 ⊢  ( 𝜑   →  𝑇   ∈  Fin )  
				
					Assertion 
					unirnffid ⊢   ( 𝜑   →  ∪   ran  𝐹   ∈  Fin )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							unirnffid.1 ⊢  ( 𝜑   →  𝐹  : 𝑇  ⟶ Fin )  
						
							2 
								
							 
							unirnffid.2 ⊢  ( 𝜑   →  𝑇   ∈  Fin )  
						
							3 
								1 
							 
							ffnd ⊢  ( 𝜑   →  𝐹   Fn  𝑇  )  
						
							4 
								
							 
							fnfi ⊢  ( ( 𝐹   Fn  𝑇   ∧  𝑇   ∈  Fin )  →  𝐹   ∈  Fin )  
						
							5 
								3  2  4 
							 
							syl2anc ⊢  ( 𝜑   →  𝐹   ∈  Fin )  
						
							6 
								
							 
							rnfi ⊢  ( 𝐹   ∈  Fin  →  ran  𝐹   ∈  Fin )  
						
							7 
								5  6 
							 
							syl ⊢  ( 𝜑   →  ran  𝐹   ∈  Fin )  
						
							8 
								1 
							 
							frnd ⊢  ( 𝜑   →  ran  𝐹   ⊆  Fin )  
						
							9 
								
							 
							unifi ⊢  ( ( ran  𝐹   ∈  Fin  ∧  ran  𝐹   ⊆  Fin )  →  ∪   ran  𝐹   ∈  Fin )  
						
							10 
								7  8  9 
							 
							syl2anc ⊢  ( 𝜑   →  ∪   ran  𝐹   ∈  Fin )