| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
| 2 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 3 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 4 |
2 3
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 5 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
|
fnovrn |
⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ (,) +∞ ) ∈ ran (,) ) |
| 8 |
4 5 6 7
|
mp3an |
⊢ ( -∞ (,) +∞ ) ∈ ran (,) |
| 9 |
1 8
|
eqeltrri |
⊢ ℝ ∈ ran (,) |
| 10 |
|
elssuni |
⊢ ( ℝ ∈ ran (,) → ℝ ⊆ ∪ ran (,) ) |
| 11 |
9 10
|
ax-mp |
⊢ ℝ ⊆ ∪ ran (,) |
| 12 |
|
frn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ ) |
| 13 |
2 12
|
ax-mp |
⊢ ran (,) ⊆ 𝒫 ℝ |
| 14 |
|
sspwuni |
⊢ ( ran (,) ⊆ 𝒫 ℝ ↔ ∪ ran (,) ⊆ ℝ ) |
| 15 |
13 14
|
mpbi |
⊢ ∪ ran (,) ⊆ ℝ |
| 16 |
11 15
|
eqssi |
⊢ ℝ = ∪ ran (,) |