Metamath Proof Explorer


Theorem unirnioo

Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007) (Revised by Mario Carneiro, 30-Jan-2014)

Ref Expression
Assertion unirnioo ℝ = ran (,)

Proof

Step Hyp Ref Expression
1 ioomax ( -∞ (,) +∞ ) = ℝ
2 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
3 ffn ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) )
4 2 3 ax-mp (,) Fn ( ℝ* × ℝ* )
5 mnfxr -∞ ∈ ℝ*
6 pnfxr +∞ ∈ ℝ*
7 fnovrn ( ( (,) Fn ( ℝ* × ℝ* ) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ (,) +∞ ) ∈ ran (,) )
8 4 5 6 7 mp3an ( -∞ (,) +∞ ) ∈ ran (,)
9 1 8 eqeltrri ℝ ∈ ran (,)
10 elssuni ( ℝ ∈ ran (,) → ℝ ⊆ ran (,) )
11 9 10 ax-mp ℝ ⊆ ran (,)
12 frn ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ )
13 2 12 ax-mp ran (,) ⊆ 𝒫 ℝ
14 sspwuni ( ran (,) ⊆ 𝒫 ℝ ↔ ran (,) ⊆ ℝ )
15 13 14 mpbi ran (,) ⊆ ℝ
16 11 15 eqssi ℝ = ran (,)