Description: A set equals the union of its singleton. Theorem 8.2 of Quine p. 53. (Contributed by NM, 30-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unisn.1 | ⊢ 𝐴 ∈ V | |
| Assertion | unisn | ⊢ ∪ { 𝐴 } = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisn.1 | ⊢ 𝐴 ∈ V | |
| 2 | unisng | ⊢ ( 𝐴 ∈ V → ∪ { 𝐴 } = 𝐴 ) | |
| 3 | 1 2 | ax-mp | ⊢ ∪ { 𝐴 } = 𝐴 |