Metamath Proof Explorer


Theorem unisn0

Description: The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion unisn0 { ∅ } = ∅

Proof

Step Hyp Ref Expression
1 ssid { ∅ } ⊆ { ∅ }
2 uni0b ( { ∅ } = ∅ ↔ { ∅ } ⊆ { ∅ } )
3 1 2 mpbir { ∅ } = ∅