Metamath Proof Explorer


Theorem unisn2

Description: A version of unisn without the A e. _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006)

Ref Expression
Assertion unisn2 { 𝐴 } ∈ { ∅ , 𝐴 }

Proof

Step Hyp Ref Expression
1 unisng ( 𝐴 ∈ V → { 𝐴 } = 𝐴 )
2 prid2g ( 𝐴 ∈ V → 𝐴 ∈ { ∅ , 𝐴 } )
3 1 2 eqeltrd ( 𝐴 ∈ V → { 𝐴 } ∈ { ∅ , 𝐴 } )
4 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
5 4 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
6 5 unieqd ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
7 uni0 ∅ = ∅
8 0ex ∅ ∈ V
9 8 prid1 ∅ ∈ { ∅ , 𝐴 }
10 7 9 eqeltri ∅ ∈ { ∅ , 𝐴 }
11 6 10 eqeltrdi ( ¬ 𝐴 ∈ V → { 𝐴 } ∈ { ∅ , 𝐴 } )
12 3 11 pm2.61i { 𝐴 } ∈ { ∅ , 𝐴 }