Description: A version of unisn without the A e. _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | unisn2 | ⊢ ∪ { 𝐴 } ∈ { ∅ , 𝐴 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisng | ⊢ ( 𝐴 ∈ V → ∪ { 𝐴 } = 𝐴 ) | |
2 | prid2g | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ { ∅ , 𝐴 } ) | |
3 | 1 2 | eqeltrd | ⊢ ( 𝐴 ∈ V → ∪ { 𝐴 } ∈ { ∅ , 𝐴 } ) |
4 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
5 | 4 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
6 | 5 | unieqd | ⊢ ( ¬ 𝐴 ∈ V → ∪ { 𝐴 } = ∪ ∅ ) |
7 | uni0 | ⊢ ∪ ∅ = ∅ | |
8 | 0ex | ⊢ ∅ ∈ V | |
9 | 8 | prid1 | ⊢ ∅ ∈ { ∅ , 𝐴 } |
10 | 7 9 | eqeltri | ⊢ ∪ ∅ ∈ { ∅ , 𝐴 } |
11 | 6 10 | eqeltrdi | ⊢ ( ¬ 𝐴 ∈ V → ∪ { 𝐴 } ∈ { ∅ , 𝐴 } ) |
12 | 3 11 | pm2.61i | ⊢ ∪ { 𝐴 } ∈ { ∅ , 𝐴 } |