Metamath Proof Explorer


Theorem unisn3

Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008)

Ref Expression
Assertion unisn3 ( 𝐴𝐵 { 𝑥𝐵𝑥 = 𝐴 } = 𝐴 )

Proof

Step Hyp Ref Expression
1 rabsn ( 𝐴𝐵 → { 𝑥𝐵𝑥 = 𝐴 } = { 𝐴 } )
2 1 unieqd ( 𝐴𝐵 { 𝑥𝐵𝑥 = 𝐴 } = { 𝐴 } )
3 unisng ( 𝐴𝐵 { 𝐴 } = 𝐴 )
4 2 3 eqtrd ( 𝐴𝐵 { 𝑥𝐵𝑥 = 𝐴 } = 𝐴 )