Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | unisn3 | ⊢ ( 𝐴 ∈ 𝐵 → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴 } = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsn | ⊢ ( 𝐴 ∈ 𝐵 → { 𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴 } = { 𝐴 } ) | |
2 | 1 | unieqd | ⊢ ( 𝐴 ∈ 𝐵 → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴 } = ∪ { 𝐴 } ) |
3 | unisng | ⊢ ( 𝐴 ∈ 𝐵 → ∪ { 𝐴 } = 𝐴 ) | |
4 | 2 3 | eqtrd | ⊢ ( 𝐴 ∈ 𝐵 → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴 } = 𝐴 ) |