Description: A set equals the union of its singleton. Theorem 8.2 of Quine p. 53. (Contributed by NM, 13-Aug-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | unisng | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
2 | 1 | unieqi | ⊢ ∪ { 𝐴 } = ∪ { 𝐴 , 𝐴 } |
3 | 2 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = ∪ { 𝐴 , 𝐴 } ) |
4 | uniprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ∪ { 𝐴 , 𝐴 } = ( 𝐴 ∪ 𝐴 ) ) | |
5 | 4 | anidms | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 , 𝐴 } = ( 𝐴 ∪ 𝐴 ) ) |
6 | unidm | ⊢ ( 𝐴 ∪ 𝐴 ) = 𝐴 | |
7 | 6 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∪ 𝐴 ) = 𝐴 ) |
8 | 3 5 7 | 3eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) |