Metamath Proof Explorer


Theorem unisng

Description: A set equals the union of its singleton. Theorem 8.2 of Quine p. 53. (Contributed by NM, 13-Aug-2002)

Ref Expression
Assertion unisng ( 𝐴𝑉 { 𝐴 } = 𝐴 )

Proof

Step Hyp Ref Expression
1 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
2 1 unieqi { 𝐴 } = { 𝐴 , 𝐴 }
3 2 a1i ( 𝐴𝑉 { 𝐴 } = { 𝐴 , 𝐴 } )
4 uniprg ( ( 𝐴𝑉𝐴𝑉 ) → { 𝐴 , 𝐴 } = ( 𝐴𝐴 ) )
5 4 anidms ( 𝐴𝑉 { 𝐴 , 𝐴 } = ( 𝐴𝐴 ) )
6 unidm ( 𝐴𝐴 ) = 𝐴
7 6 a1i ( 𝐴𝑉 → ( 𝐴𝐴 ) = 𝐴 )
8 3 5 7 3eqtrd ( 𝐴𝑉 { 𝐴 } = 𝐴 )