Metamath Proof Explorer


Theorem uniss2

Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of TakeutiZaring p. 59. See iunss2 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004)

Ref Expression
Assertion uniss2 ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 ssuni ( ( 𝑥𝑦𝑦𝐵 ) → 𝑥 𝐵 )
2 1 expcom ( 𝑦𝐵 → ( 𝑥𝑦𝑥 𝐵 ) )
3 2 rexlimiv ( ∃ 𝑦𝐵 𝑥𝑦𝑥 𝐵 )
4 3 ralimi ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀ 𝑥𝐴 𝑥 𝐵 )
5 unissb ( 𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑥 𝐵 )
6 4 5 sylibr ( ∀ 𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵 )