| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluni |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) |
| 2 |
1
|
imbi1i |
⊢ ( ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 3 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 4 |
2 3
|
bitr4i |
⊢ ( ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 5 |
4
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 6 |
|
elequ1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
| 7 |
6
|
anbi1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 8 |
|
eleq1w |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
| 9 |
7 8
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) ) ) |
| 10 |
|
elequ2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) |
| 11 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 12 |
10 11
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 13 |
12
|
imbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) ) |
| 14 |
9 13
|
alcomw |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 15 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 16 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ) |
| 17 |
|
bi2.04 |
⊢ ( ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 18 |
16 17
|
bitri |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 19 |
18
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 20 |
|
df-ss |
⊢ ( 𝑥 ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) |
| 21 |
20
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 22 |
15 19 21
|
3bitr4i |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 23 |
22
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 24 |
14 23
|
bitri |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 25 |
5 24
|
bitri |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 26 |
|
df-ss |
⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ) |
| 27 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 28 |
25 26 27
|
3bitr4i |
⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ) |