| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluni |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) |
| 2 |
1
|
imbi1i |
⊢ ( ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 3 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 4 |
2 3
|
bitr4i |
⊢ ( ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 5 |
4
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 6 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 7 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 8 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ) |
| 9 |
|
bi2.04 |
⊢ ( ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 10 |
8 9
|
bitri |
⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 11 |
10
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 12 |
|
df-ss |
⊢ ( 𝑥 ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) |
| 13 |
12
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 14 |
7 11 13
|
3bitr4i |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 15 |
14
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 16 |
6 15
|
bitri |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 17 |
5 16
|
bitri |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 18 |
|
df-ss |
⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ) |
| 19 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 20 |
17 18 19
|
3bitr4i |
⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ) |