Metamath Proof Explorer


Theorem unissel

Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion unissel ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴𝐵 )
2 elssuni ( 𝐵𝐴𝐵 𝐴 )
3 2 adantl ( ( 𝐴𝐵𝐵𝐴 ) → 𝐵 𝐴 )
4 1 3 eqssd ( ( 𝐴𝐵𝐵𝐴 ) → 𝐴 = 𝐵 )