Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( ∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
2 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
3 |
|
intssuni |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
4 |
2 3
|
sylbir |
⊢ ( ¬ 𝐴 = ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
5 |
4
|
adantl |
⊢ ( ( ∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
6 |
1 5
|
eqssd |
⊢ ( ( ∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∪ 𝐴 = ∩ 𝐴 ) |
7 |
6
|
ex |
⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 → ( ¬ 𝐴 = ∅ → ∪ 𝐴 = ∩ 𝐴 ) ) |
8 |
7
|
orrd |
⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 → ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) ) |
9 |
|
ssv |
⊢ ∪ 𝐴 ⊆ V |
10 |
|
int0 |
⊢ ∩ ∅ = V |
11 |
9 10
|
sseqtrri |
⊢ ∪ 𝐴 ⊆ ∩ ∅ |
12 |
|
inteq |
⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) |
13 |
11 12
|
sseqtrrid |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
14 |
|
eqimss |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
15 |
13 14
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
16 |
8 15
|
impbii |
⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) ) |