| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( ∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
| 2 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
| 3 |
|
intssuni |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 4 |
2 3
|
sylbir |
⊢ ( ¬ 𝐴 = ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 5 |
4
|
adantl |
⊢ ( ( ∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 6 |
1 5
|
eqssd |
⊢ ( ( ∪ 𝐴 ⊆ ∩ 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∪ 𝐴 = ∩ 𝐴 ) |
| 7 |
6
|
ex |
⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 → ( ¬ 𝐴 = ∅ → ∪ 𝐴 = ∩ 𝐴 ) ) |
| 8 |
7
|
orrd |
⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 → ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) ) |
| 9 |
|
ssv |
⊢ ∪ 𝐴 ⊆ V |
| 10 |
|
int0 |
⊢ ∩ ∅ = V |
| 11 |
9 10
|
sseqtrri |
⊢ ∪ 𝐴 ⊆ ∩ ∅ |
| 12 |
|
inteq |
⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) |
| 13 |
11 12
|
sseqtrrid |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
| 14 |
|
eqimss |
⊢ ( ∪ 𝐴 = ∩ 𝐴 → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
| 15 |
13 14
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) → ∪ 𝐴 ⊆ ∩ 𝐴 ) |
| 16 |
8 15
|
impbii |
⊢ ( ∪ 𝐴 ⊆ ∩ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∪ 𝐴 = ∩ 𝐴 ) ) |