Metamath Proof Explorer


Theorem unisuc

Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of Enderton p. 72 and Exercise 6 of Enderton p. 73. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis unisuc.1 𝐴 ∈ V
Assertion unisuc ( Tr 𝐴 suc 𝐴 = 𝐴 )

Proof

Step Hyp Ref Expression
1 unisuc.1 𝐴 ∈ V
2 ssequn1 ( 𝐴𝐴 ↔ ( 𝐴𝐴 ) = 𝐴 )
3 df-tr ( Tr 𝐴 𝐴𝐴 )
4 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
5 4 unieqi suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
6 uniun ( 𝐴 ∪ { 𝐴 } ) = ( 𝐴 { 𝐴 } )
7 1 unisn { 𝐴 } = 𝐴
8 7 uneq2i ( 𝐴 { 𝐴 } ) = ( 𝐴𝐴 )
9 5 6 8 3eqtri suc 𝐴 = ( 𝐴𝐴 )
10 9 eqeq1i ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴 ) = 𝐴 )
11 2 3 10 3bitr4i ( Tr 𝐴 suc 𝐴 = 𝐴 )