Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993) Extract from unisuc . (Revised by BJ, 28-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unisucs | ⊢ ( 𝐴 ∈ 𝑉 → ∪ suc 𝐴 = ( ∪ 𝐴 ∪ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 2 | 1 | unieqi | ⊢ ∪ suc 𝐴 = ∪ ( 𝐴 ∪ { 𝐴 } ) | 
| 3 | 2 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∪ suc 𝐴 = ∪ ( 𝐴 ∪ { 𝐴 } ) ) | 
| 4 | uniun | ⊢ ∪ ( 𝐴 ∪ { 𝐴 } ) = ( ∪ 𝐴 ∪ ∪ { 𝐴 } ) | |
| 5 | 4 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∪ ( 𝐴 ∪ { 𝐴 } ) = ( ∪ 𝐴 ∪ ∪ { 𝐴 } ) ) | 
| 6 | unisng | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) | |
| 7 | 6 | uneq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ∪ 𝐴 ∪ ∪ { 𝐴 } ) = ( ∪ 𝐴 ∪ 𝐴 ) ) | 
| 8 | 3 5 7 | 3eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ∪ suc 𝐴 = ( ∪ 𝐴 ∪ 𝐴 ) ) |