Metamath Proof Explorer


Theorem unisucs

Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993) Extract from unisuc . (Revised by BJ, 28-Dec-2024)

Ref Expression
Assertion unisucs ( 𝐴𝑉 suc 𝐴 = ( 𝐴𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
2 1 unieqi suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
3 2 a1i ( 𝐴𝑉 suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) )
4 uniun ( 𝐴 ∪ { 𝐴 } ) = ( 𝐴 { 𝐴 } )
5 4 a1i ( 𝐴𝑉 ( 𝐴 ∪ { 𝐴 } ) = ( 𝐴 { 𝐴 } ) )
6 unisng ( 𝐴𝑉 { 𝐴 } = 𝐴 )
7 6 uneq2d ( 𝐴𝑉 → ( 𝐴 { 𝐴 } ) = ( 𝐴𝐴 ) )
8 3 5 7 3eqtrd ( 𝐴𝑉 suc 𝐴 = ( 𝐴𝐴 ) )