Step |
Hyp |
Ref |
Expression |
1 |
|
unitmulcl.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
unitgrp.2 |
⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) |
3 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
4 |
1 2
|
unitgrp |
⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Grp ) |
5 |
3 4
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Grp ) |
6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
7 |
6
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
8 |
5
|
grpmndd |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
9 |
2
|
subcmn |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ 𝐺 ∈ Mnd ) → 𝐺 ∈ CMnd ) |
10 |
7 8 9
|
syl2anc |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
11 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
12 |
5 10 11
|
sylanbrc |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Abel ) |