Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitcl.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| unitcl.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| Assertion | unitcl | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcl.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | unitcl.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 7 | 2 3 4 5 6 | isunit | ⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 8 | 7 | simplbi | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 9 | 1 4 | dvdsrcl | ⊢ ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) → 𝑋 ∈ 𝐵 ) |
| 10 | 8 9 | syl | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ 𝐵 ) |