Metamath Proof Explorer


Theorem unitdvcl

Description: The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses unitdvcl.o 𝑈 = ( Unit ‘ 𝑅 )
unitdvcl.d / = ( /r𝑅 )
Assertion unitdvcl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈 ) → ( 𝑋 / 𝑌 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 unitdvcl.o 𝑈 = ( Unit ‘ 𝑅 )
2 unitdvcl.d / = ( /r𝑅 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 3 1 unitcl ( 𝑋𝑈𝑋 ∈ ( Base ‘ 𝑅 ) )
5 eqid ( .r𝑅 ) = ( .r𝑅 )
6 eqid ( invr𝑅 ) = ( invr𝑅 )
7 3 5 1 6 2 dvrval ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑌 ) ) )
8 4 7 sylan ( ( 𝑋𝑈𝑌𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑌 ) ) )
9 8 3adant1 ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑌 ) ) )
10 1 6 unitinvcl ( ( 𝑅 ∈ Ring ∧ 𝑌𝑈 ) → ( ( invr𝑅 ) ‘ 𝑌 ) ∈ 𝑈 )
11 10 3adant2 ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈 ) → ( ( invr𝑅 ) ‘ 𝑌 ) ∈ 𝑈 )
12 1 5 unitmulcl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ∧ ( ( invr𝑅 ) ‘ 𝑌 ) ∈ 𝑈 ) → ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑌 ) ) ∈ 𝑈 )
13 11 12 syld3an3 ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈 ) → ( 𝑋 ( .r𝑅 ) ( ( invr𝑅 ) ‘ 𝑌 ) ) ∈ 𝑈 )
14 9 13 eqeltrd ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈 ) → ( 𝑋 / 𝑌 ) ∈ 𝑈 )