Step |
Hyp |
Ref |
Expression |
1 |
|
unitmulcl.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
unitgrp.2 |
⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) |
3 |
1 2
|
unitgrpbas |
⊢ 𝑈 = ( Base ‘ 𝐺 ) |
4 |
3
|
a1i |
⊢ ( 𝑅 ∈ Ring → 𝑈 = ( Base ‘ 𝐺 ) ) |
5 |
1
|
fvexi |
⊢ 𝑈 ∈ V |
6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
6 7
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
9 |
2 8
|
ressplusg |
⊢ ( 𝑈 ∈ V → ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) ) |
10 |
5 9
|
mp1i |
⊢ ( 𝑅 ∈ Ring → ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) ) |
11 |
1 7
|
unitmulcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑈 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
12 1
|
unitcl |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
14 |
12 1
|
unitcl |
⊢ ( 𝑦 ∈ 𝑈 → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
15 |
12 1
|
unitcl |
⊢ ( 𝑧 ∈ 𝑈 → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
16 |
13 14 15
|
3anim123i |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) |
17 |
12 7
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
18 |
16 17
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
19 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
20 |
1 19
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
21 |
12 7 19
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
22 |
13 21
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
23 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
24 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
25 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
26 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
27 |
1 19 24 25 26
|
isunit |
⊢ ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
28 |
23 27
|
sylib |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
29 |
13
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
30 |
12 24 7
|
dvdsr2 |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
32 |
25 12
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
33 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
34 |
32 26 33
|
dvdsr2 |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ↔ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
35 |
29 34
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ↔ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
36 |
31 35
|
anbi12d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ↔ ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) |
37 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ↔ ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
38 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑚 ∈ ( Base ‘ 𝑅 ) ) |
39 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
40 |
12 24 7
|
dvdsrmul |
⊢ ( ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑚 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) |
41 |
38 39 40
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑚 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) |
42 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑅 ∈ Ring ) |
43 |
|
simplr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
44 |
12 7
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑚 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) ) |
45 |
42 43 39 38 44
|
syl13anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) ) |
46 |
|
simprrl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
47 |
46
|
oveq1d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑚 ) ) |
48 |
12 7 25 33
|
opprmul |
⊢ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) |
49 |
|
simprrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
50 |
48 49
|
eqtr3id |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) = ( 1r ‘ 𝑅 ) ) |
51 |
50
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
52 |
45 47 51
|
3eqtr3d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
53 |
12 7 19
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑚 ) = 𝑚 ) |
54 |
42 38 53
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑚 ) = 𝑚 ) |
55 |
12 7 19
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑦 ) |
56 |
42 43 55
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑦 ) |
57 |
52 54 56
|
3eqtr3d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑚 = 𝑦 ) |
58 |
41 57 50
|
3brtr3d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
59 |
32 26 33
|
dvdsrmul |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ) |
60 |
43 39 59
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ) |
61 |
12 7 25 33
|
opprmul |
⊢ ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) |
62 |
61 46
|
eqtrid |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) = ( 1r ‘ 𝑅 ) ) |
63 |
60 62
|
breqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
64 |
1 19 24 25 26
|
isunit |
⊢ ( 𝑦 ∈ 𝑈 ↔ ( 𝑦 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑦 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
65 |
58 63 64
|
sylanbrc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ∈ 𝑈 ) |
66 |
65 46
|
jca |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑦 ∈ 𝑈 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
67 |
66
|
rexlimdvaa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) → ( 𝑦 ∈ 𝑈 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) |
68 |
67
|
expimpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) → ( 𝑦 ∈ 𝑈 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) |
69 |
68
|
reximdv2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) → ∃ 𝑦 ∈ 𝑈 ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
70 |
37 69
|
syl5bir |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) → ∃ 𝑦 ∈ 𝑈 ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
71 |
36 70
|
sylbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) → ∃ 𝑦 ∈ 𝑈 ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
72 |
28 71
|
mpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ∃ 𝑦 ∈ 𝑈 ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
73 |
4 10 11 18 20 22 72
|
isgrpde |
⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Grp ) |