Metamath Proof Explorer


Theorem unitgrpbas

Description: The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014)

Ref Expression
Hypotheses unitmulcl.1 𝑈 = ( Unit ‘ 𝑅 )
unitgrp.2 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 )
Assertion unitgrpbas 𝑈 = ( Base ‘ 𝐺 )

Proof

Step Hyp Ref Expression
1 unitmulcl.1 𝑈 = ( Unit ‘ 𝑅 )
2 unitgrp.2 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 3 1 unitss 𝑈 ⊆ ( Base ‘ 𝑅 )
5 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
6 5 3 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
7 2 6 ressbas2 ( 𝑈 ⊆ ( Base ‘ 𝑅 ) → 𝑈 = ( Base ‘ 𝐺 ) )
8 4 7 ax-mp 𝑈 = ( Base ‘ 𝐺 )