Description: The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
unitgrp.2 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | ||
Assertion | unitgrpbas | ⊢ 𝑈 = ( Base ‘ 𝐺 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
2 | unitgrp.2 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
4 | 3 1 | unitss | ⊢ 𝑈 ⊆ ( Base ‘ 𝑅 ) |
5 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
6 | 5 3 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
7 | 2 6 | ressbas2 | ⊢ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) → 𝑈 = ( Base ‘ 𝐺 ) ) |
8 | 4 7 | ax-mp | ⊢ 𝑈 = ( Base ‘ 𝐺 ) |