Description: The identity of the group of units of a ring is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitgrp.2 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | ||
| unitgrp.3 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | unitgrpid | ⊢ ( 𝑅 ∈ Ring → 1 = ( 0g ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitgrp.2 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
| 3 | unitgrp.3 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 1 3 | 1unit | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝑈 ) |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 5 1 | unitss | ⊢ 𝑈 ⊆ ( Base ‘ 𝑅 ) |
| 7 | 2 5 3 | ringidss | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ 1 ∈ 𝑈 ) → 1 = ( 0g ‘ 𝐺 ) ) |
| 8 | 6 7 | mp3an2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ 𝑈 ) → 1 = ( 0g ‘ 𝐺 ) ) |
| 9 | 4 8 | mpdan | ⊢ ( 𝑅 ∈ Ring → 1 = ( 0g ‘ 𝐺 ) ) |