Metamath Proof Explorer


Theorem unitgrpid

Description: The identity of the multiplicative group is 1r . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitmulcl.1 𝑈 = ( Unit ‘ 𝑅 )
unitgrp.2 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 )
unitgrp.3 1 = ( 1r𝑅 )
Assertion unitgrpid ( 𝑅 ∈ Ring → 1 = ( 0g𝐺 ) )

Proof

Step Hyp Ref Expression
1 unitmulcl.1 𝑈 = ( Unit ‘ 𝑅 )
2 unitgrp.2 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 )
3 unitgrp.3 1 = ( 1r𝑅 )
4 1 3 1unit ( 𝑅 ∈ Ring → 1𝑈 )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 5 1 unitss 𝑈 ⊆ ( Base ‘ 𝑅 )
7 2 5 3 ringidss ( ( 𝑅 ∈ Ring ∧ 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ 1𝑈 ) → 1 = ( 0g𝐺 ) )
8 6 7 mp3an2 ( ( 𝑅 ∈ Ring ∧ 1𝑈 ) → 1 = ( 0g𝐺 ) )
9 4 8 mpdan ( 𝑅 ∈ Ring → 1 = ( 0g𝐺 ) )