Metamath Proof Explorer


Theorem unitinvcl

Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitinvcl.1 𝑈 = ( Unit ‘ 𝑅 )
unitinvcl.2 𝐼 = ( invr𝑅 )
Assertion unitinvcl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝐼𝑋 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 unitinvcl.1 𝑈 = ( Unit ‘ 𝑅 )
2 unitinvcl.2 𝐼 = ( invr𝑅 )
3 eqid ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 )
4 1 3 unitgrp ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp )
5 1 3 unitgrpbas 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) )
6 1 3 2 invrfval 𝐼 = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) )
7 5 6 grpinvcl ( ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ∧ 𝑋𝑈 ) → ( 𝐼𝑋 ) ∈ 𝑈 )
8 4 7 sylan ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝐼𝑋 ) ∈ 𝑈 )