Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitinvcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
unitinvcl.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
Assertion | unitinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
2 | unitinvcl.2 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
3 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
4 | 1 3 | unitgrp | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ) |
5 | 1 3 | unitgrpbas | ⊢ 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
6 | 1 3 2 | invrfval | ⊢ 𝐼 = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
7 | 5 6 | grpinvcl | ⊢ ( ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑈 ) |
8 | 4 7 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑈 ) |