| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unitinvcl.1 | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 2 |  | unitinvcl.2 | ⊢ 𝐼  =  ( invr ‘ 𝑅 ) | 
						
							| 3 |  | unitinvcl.3 | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | unitinvcl.4 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  =  ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) | 
						
							| 6 | 1 5 | unitgrp | ⊢ ( 𝑅  ∈  Ring  →  ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  ∈  Grp ) | 
						
							| 7 | 1 5 | unitgrpbas | ⊢ 𝑈  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 8 | 1 | fvexi | ⊢ 𝑈  ∈  V | 
						
							| 9 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 10 | 9 3 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 11 | 5 10 | ressplusg | ⊢ ( 𝑈  ∈  V  →   ·   =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) | 
						
							| 12 | 8 11 | ax-mp | ⊢  ·   =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 13 |  | eqid | ⊢ ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) )  =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 14 | 1 5 2 | invrfval | ⊢ 𝐼  =  ( invg ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) | 
						
							| 15 | 7 12 13 14 | grplinv | ⊢ ( ( ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 )  ∈  Grp  ∧  𝑋  ∈  𝑈 )  →  ( ( 𝐼 ‘ 𝑋 )  ·  𝑋 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) | 
						
							| 16 | 6 15 | sylan | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝑈 )  →  ( ( 𝐼 ‘ 𝑋 )  ·  𝑋 )  =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) | 
						
							| 17 | 1 5 4 | unitgrpid | ⊢ ( 𝑅  ∈  Ring  →   1   =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝑈 )  →   1   =  ( 0g ‘ ( ( mulGrp ‘ 𝑅 )  ↾s  𝑈 ) ) ) | 
						
							| 19 | 16 18 | eqtr4d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝑈 )  →  ( ( 𝐼 ‘ 𝑋 )  ·  𝑋 )  =   1  ) |