Step |
Hyp |
Ref |
Expression |
1 |
|
unitmulcl.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
unitmulcl.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
4 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
5 1
|
unitcl |
⊢ ( 𝑌 ∈ 𝑈 → 𝑌 ∈ ( Base ‘ 𝑅 ) ) |
7 |
4 6
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ ( Base ‘ 𝑅 ) ) |
8 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
13 |
1 9 10 11 12
|
isunit |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
14 |
8 13
|
sylib |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
15 |
14
|
simpld |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
16 |
5 10 2
|
dvdsrmul1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ ( Base ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( ( 1r ‘ 𝑅 ) · 𝑌 ) ) |
17 |
3 7 15 16
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( ( 1r ‘ 𝑅 ) · 𝑌 ) ) |
18 |
5 2 9
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
19 |
3 7 18
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
20 |
17 19
|
breqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) 𝑌 ) |
21 |
1 9 10 11 12
|
isunit |
⊢ ( 𝑌 ∈ 𝑈 ↔ ( 𝑌 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
22 |
4 21
|
sylib |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
23 |
22
|
simpld |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
24 |
5 10
|
dvdsrtr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) 𝑌 ∧ 𝑌 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
25 |
3 20 23 24
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
26 |
11
|
opprring |
⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
27 |
3 26
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( oppr ‘ 𝑅 ) ∈ Ring ) |
28 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
29 |
5 2 11 28
|
opprmul |
⊢ ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = ( 𝑋 · 𝑌 ) |
30 |
5 1
|
unitcl |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
31 |
8 30
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
32 |
22
|
simprd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
33 |
11 5
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
34 |
33 12 28
|
dvdsrmul1 |
⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) → ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( 1r ‘ 𝑅 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) |
35 |
27 31 32 34
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( 1r ‘ 𝑅 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) |
36 |
5 2 11 28
|
opprmul |
⊢ ( ( 1r ‘ 𝑅 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = ( 𝑋 · ( 1r ‘ 𝑅 ) ) |
37 |
5 2 9
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
38 |
3 31 37
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
39 |
36 38
|
eqtrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 𝑋 ) |
40 |
35 39
|
breqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) |
41 |
29 40
|
eqbrtrrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) |
42 |
14
|
simprd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
43 |
33 12
|
dvdsrtr |
⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
44 |
27 41 42 43
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
45 |
1 9 10 11 12
|
isunit |
⊢ ( ( 𝑋 · 𝑌 ) ∈ 𝑈 ↔ ( ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
46 |
25 44 45
|
sylanbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |