| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitmulcl.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 2 |
|
unitmulcl.2 |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
unitmulclb.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
| 5 |
|
simp2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 6 |
|
simp3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 8 |
3 7 2
|
dvdsrmul |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑌 · 𝑋 ) ) |
| 9 |
5 6 8
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑌 · 𝑋 ) ) |
| 10 |
3 2
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| 11 |
9 10
|
breqtrrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 12 |
1 7
|
dvdsunit |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 13 |
12
|
3expia |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → 𝑋 ∈ 𝑈 ) ) |
| 14 |
4 11 13
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → 𝑋 ∈ 𝑈 ) ) |
| 15 |
3 7 2
|
dvdsrmul |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 16 |
6 5 15
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 17 |
1 7
|
dvdsunit |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
| 18 |
17
|
3expia |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → 𝑌 ∈ 𝑈 ) ) |
| 19 |
4 16 18
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → 𝑌 ∈ 𝑈 ) ) |
| 20 |
14 19
|
jcad |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) ) |
| 21 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 23 |
1 2
|
unitmulcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |
| 24 |
23
|
3expib |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) ) |
| 25 |
22 24
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) ) |
| 26 |
20 25
|
impbid |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 ↔ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) ) |