Metamath Proof Explorer


Theorem unitnz

Description: In a nonzero ring, a unit cannot be zero. (Contributed by Thierry Arnoux, 25-Apr-2025)

Ref Expression
Hypotheses unitnz.1 𝑈 = ( Unit ‘ 𝑅 )
unitnz.2 0 = ( 0g𝑅 )
unitnz.3 ( 𝜑𝑅 ∈ NzRing )
unitnz.4 ( 𝜑𝑋𝑈 )
Assertion unitnz ( 𝜑𝑋0 )

Proof

Step Hyp Ref Expression
1 unitnz.1 𝑈 = ( Unit ‘ 𝑅 )
2 unitnz.2 0 = ( 0g𝑅 )
3 unitnz.3 ( 𝜑𝑅 ∈ NzRing )
4 unitnz.4 ( 𝜑𝑋𝑈 )
5 nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )
6 3 5 syl ( 𝜑𝑅 ∈ Ring )
7 eqid ( 1r𝑅 ) = ( 1r𝑅 )
8 7 2 nzrnz ( 𝑅 ∈ NzRing → ( 1r𝑅 ) ≠ 0 )
9 3 8 syl ( 𝜑 → ( 1r𝑅 ) ≠ 0 )
10 1 2 7 0unit ( 𝑅 ∈ Ring → ( 0𝑈 ↔ ( 1r𝑅 ) = 0 ) )
11 10 necon3bbid ( 𝑅 ∈ Ring → ( ¬ 0𝑈 ↔ ( 1r𝑅 ) ≠ 0 ) )
12 11 biimpar ( ( 𝑅 ∈ Ring ∧ ( 1r𝑅 ) ≠ 0 ) → ¬ 0𝑈 )
13 6 9 12 syl2anc ( 𝜑 → ¬ 0𝑈 )
14 nelne2 ( ( 𝑋𝑈 ∧ ¬ 0𝑈 ) → 𝑋0 )
15 4 13 14 syl2anc ( 𝜑𝑋0 )