Step |
Hyp |
Ref |
Expression |
1 |
|
unitnz.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
unitnz.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
unitnz.3 |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
4 |
|
unitnz.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
5 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
8 |
7 2
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ 0 ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ 0 ) |
10 |
1 2 7
|
0unit |
⊢ ( 𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ ( 1r ‘ 𝑅 ) = 0 ) ) |
11 |
10
|
necon3bbid |
⊢ ( 𝑅 ∈ Ring → ( ¬ 0 ∈ 𝑈 ↔ ( 1r ‘ 𝑅 ) ≠ 0 ) ) |
12 |
11
|
biimpar |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ 0 ) → ¬ 0 ∈ 𝑈 ) |
13 |
6 9 12
|
syl2anc |
⊢ ( 𝜑 → ¬ 0 ∈ 𝑈 ) |
14 |
|
nelne2 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ ¬ 0 ∈ 𝑈 ) → 𝑋 ≠ 0 ) |
15 |
4 13 14
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |