Step |
Hyp |
Ref |
Expression |
1 |
|
rngidpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
rngidpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
rngidpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
4 |
1 2 3
|
rngidpropd |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |
5 |
4
|
breq2d |
⊢ ( 𝜑 → ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ↔ 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐿 ) ) ) |
6 |
4
|
breq2d |
⊢ ( 𝜑 → ( 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐾 ) ↔ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐿 ) ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐾 ) ) ↔ ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐿 ) ) ) ) |
8 |
1 2 3
|
dvdsrpropd |
⊢ ( 𝜑 → ( ∥r ‘ 𝐾 ) = ( ∥r ‘ 𝐿 ) ) |
9 |
8
|
breqd |
⊢ ( 𝜑 → ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐿 ) ↔ 𝑧 ( ∥r ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ) ) |
10 |
|
eqid |
⊢ ( oppr ‘ 𝐾 ) = ( oppr ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
12 |
10 11
|
opprbas |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( oppr ‘ 𝐾 ) ) |
13 |
1 12
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( oppr ‘ 𝐾 ) ) ) |
14 |
|
eqid |
⊢ ( oppr ‘ 𝐿 ) = ( oppr ‘ 𝐿 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
16 |
14 15
|
opprbas |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( oppr ‘ 𝐿 ) ) |
17 |
2 16
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( oppr ‘ 𝐿 ) ) ) |
18 |
3
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
19 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
20 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝐾 ) ) = ( .r ‘ ( oppr ‘ 𝐾 ) ) |
21 |
11 19 10 20
|
opprmul |
⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝐾 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) |
22 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
23 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝐿 ) ) = ( .r ‘ ( oppr ‘ 𝐿 ) ) |
24 |
15 22 14 23
|
opprmul |
⊢ ( 𝑦 ( .r ‘ ( oppr ‘ 𝐿 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) |
25 |
18 21 24
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑦 ( .r ‘ ( oppr ‘ 𝐾 ) ) 𝑥 ) = ( 𝑦 ( .r ‘ ( oppr ‘ 𝐿 ) ) 𝑥 ) ) |
26 |
13 17 25
|
dvdsrpropd |
⊢ ( 𝜑 → ( ∥r ‘ ( oppr ‘ 𝐾 ) ) = ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ) |
27 |
26
|
breqd |
⊢ ( 𝜑 → ( 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐿 ) ↔ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ( 1r ‘ 𝐿 ) ) ) |
28 |
9 27
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐿 ) ) ↔ ( 𝑧 ( ∥r ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ( 1r ‘ 𝐿 ) ) ) ) |
29 |
7 28
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐾 ) ) ↔ ( 𝑧 ( ∥r ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ( 1r ‘ 𝐿 ) ) ) ) |
30 |
|
eqid |
⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) |
31 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
32 |
|
eqid |
⊢ ( ∥r ‘ 𝐾 ) = ( ∥r ‘ 𝐾 ) |
33 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝐾 ) ) = ( ∥r ‘ ( oppr ‘ 𝐾 ) ) |
34 |
30 31 32 10 33
|
isunit |
⊢ ( 𝑧 ∈ ( Unit ‘ 𝐾 ) ↔ ( 𝑧 ( ∥r ‘ 𝐾 ) ( 1r ‘ 𝐾 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐾 ) ) ( 1r ‘ 𝐾 ) ) ) |
35 |
|
eqid |
⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) |
36 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
37 |
|
eqid |
⊢ ( ∥r ‘ 𝐿 ) = ( ∥r ‘ 𝐿 ) |
38 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝐿 ) ) = ( ∥r ‘ ( oppr ‘ 𝐿 ) ) |
39 |
35 36 37 14 38
|
isunit |
⊢ ( 𝑧 ∈ ( Unit ‘ 𝐿 ) ↔ ( 𝑧 ( ∥r ‘ 𝐿 ) ( 1r ‘ 𝐿 ) ∧ 𝑧 ( ∥r ‘ ( oppr ‘ 𝐿 ) ) ( 1r ‘ 𝐿 ) ) ) |
40 |
29 34 39
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑧 ∈ ( Unit ‘ 𝐾 ) ↔ 𝑧 ∈ ( Unit ‘ 𝐿 ) ) ) |
41 |
40
|
eqrdv |
⊢ ( 𝜑 → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |