Metamath Proof Explorer


Theorem unitreslOLD

Description: Obsolete version of olcnd as of 13-Apr-2024. (Contributed by Giovanni Mascellani, 15-Sep-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses olcnd.1 ( 𝜑 → ( 𝜓𝜒 ) )
olcnd.2 ( 𝜑 → ¬ 𝜒 )
Assertion unitreslOLD ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 olcnd.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 olcnd.2 ( 𝜑 → ¬ 𝜒 )
3 orcom ( ( 𝜓𝜒 ) ↔ ( 𝜒𝜓 ) )
4 df-or ( ( 𝜒𝜓 ) ↔ ( ¬ 𝜒𝜓 ) )
5 3 4 sylbb ( ( 𝜓𝜒 ) → ( ¬ 𝜒𝜓 ) )
6 1 2 5 sylc ( 𝜑𝜓 )