| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitinvcl.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 2 |
|
unitinvcl.2 |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 3 |
|
unitinvcl.3 |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
unitinvcl.4 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) |
| 6 |
1 5
|
unitgrp |
⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ) |
| 7 |
1 5
|
unitgrpbas |
⊢ 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 8 |
1
|
fvexi |
⊢ 𝑈 ∈ V |
| 9 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 10 |
9 3
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 11 |
5 10
|
ressplusg |
⊢ ( 𝑈 ∈ V → · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 12 |
8 11
|
ax-mp |
⊢ · = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 14 |
1 5 2
|
invrfval |
⊢ 𝐼 = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 15 |
7 12 13 14
|
grprinv |
⊢ ( ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 16 |
6 15
|
sylan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 17 |
1 5 4
|
unitgrpid |
⊢ ( 𝑅 ∈ Ring → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 19 |
16 18
|
eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 · ( 𝐼 ‘ 𝑋 ) ) = 1 ) |