Metamath Proof Explorer


Theorem unitss

Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses unitcl.1 𝐵 = ( Base ‘ 𝑅 )
unitcl.2 𝑈 = ( Unit ‘ 𝑅 )
Assertion unitss 𝑈𝐵

Proof

Step Hyp Ref Expression
1 unitcl.1 𝐵 = ( Base ‘ 𝑅 )
2 unitcl.2 𝑈 = ( Unit ‘ 𝑅 )
3 1 2 unitcl ( 𝑥𝑈𝑥𝐵 )
4 3 ssriv 𝑈𝐵