Metamath Proof Explorer


Theorem unitssre

Description: ( 0 , 1 ) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Assertion unitssre ( 0 [,] 1 ) ⊆ ℝ

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 1re 1 ∈ ℝ
3 iccssre ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 [,] 1 ) ⊆ ℝ )
4 1 2 3 mp2an ( 0 [,] 1 ) ⊆ ℝ