Description: ( 0 , 1 ) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | ⊢ 0 ∈ ℝ | |
2 | 1re | ⊢ 1 ∈ ℝ | |
3 | iccssre | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 [,] 1 ) ⊆ ℝ ) | |
4 | 1 2 3 | mp2an | ⊢ ( 0 [,] 1 ) ⊆ ℝ |