Step |
Hyp |
Ref |
Expression |
1 |
|
unitsubm.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
unitsubm.2 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
3 1
|
unitss |
⊢ 𝑈 ⊆ ( Base ‘ 𝑅 ) |
5 |
4
|
a1i |
⊢ ( 𝑅 ∈ Ring → 𝑈 ⊆ ( Base ‘ 𝑅 ) ) |
6 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
7 |
1 6
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
8 |
2
|
oveq1i |
⊢ ( 𝑀 ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) |
9 |
1 8
|
unitgrp |
⊢ ( 𝑅 ∈ Ring → ( 𝑀 ↾s 𝑈 ) ∈ Grp ) |
10 |
9
|
grpmndd |
⊢ ( 𝑅 ∈ Ring → ( 𝑀 ↾s 𝑈 ) ∈ Mnd ) |
11 |
2
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
12 |
2 3
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
13 |
2 6
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
14 |
|
eqid |
⊢ ( 𝑀 ↾s 𝑈 ) = ( 𝑀 ↾s 𝑈 ) |
15 |
12 13 14
|
issubm2 |
⊢ ( 𝑀 ∈ Mnd → ( 𝑈 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑈 ∧ ( 𝑀 ↾s 𝑈 ) ∈ Mnd ) ) ) |
16 |
11 15
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 𝑈 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑈 ∧ ( 𝑀 ↾s 𝑈 ) ∈ Mnd ) ) ) |
17 |
5 7 10 16
|
mpbir3and |
⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ ( SubMnd ‘ 𝑀 ) ) |