Metamath Proof Explorer


Theorem unitsubm

Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses unitsubm.1 𝑈 = ( Unit ‘ 𝑅 )
unitsubm.2 𝑀 = ( mulGrp ‘ 𝑅 )
Assertion unitsubm ( 𝑅 ∈ Ring → 𝑈 ∈ ( SubMnd ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 unitsubm.1 𝑈 = ( Unit ‘ 𝑅 )
2 unitsubm.2 𝑀 = ( mulGrp ‘ 𝑅 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 3 1 unitss 𝑈 ⊆ ( Base ‘ 𝑅 )
5 4 a1i ( 𝑅 ∈ Ring → 𝑈 ⊆ ( Base ‘ 𝑅 ) )
6 eqid ( 1r𝑅 ) = ( 1r𝑅 )
7 1 6 1unit ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝑈 )
8 2 oveq1i ( 𝑀s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 )
9 1 8 unitgrp ( 𝑅 ∈ Ring → ( 𝑀s 𝑈 ) ∈ Grp )
10 grpmnd ( ( 𝑀s 𝑈 ) ∈ Grp → ( 𝑀s 𝑈 ) ∈ Mnd )
11 9 10 syl ( 𝑅 ∈ Ring → ( 𝑀s 𝑈 ) ∈ Mnd )
12 2 ringmgp ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd )
13 2 3 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 )
14 2 6 ringidval ( 1r𝑅 ) = ( 0g𝑀 )
15 eqid ( 𝑀s 𝑈 ) = ( 𝑀s 𝑈 )
16 13 14 15 issubm2 ( 𝑀 ∈ Mnd → ( 𝑈 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r𝑅 ) ∈ 𝑈 ∧ ( 𝑀s 𝑈 ) ∈ Mnd ) ) )
17 12 16 syl ( 𝑅 ∈ Ring → ( 𝑈 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r𝑅 ) ∈ 𝑈 ∧ ( 𝑀s 𝑈 ) ∈ Mnd ) ) )
18 5 7 11 17 mpbir3and ( 𝑅 ∈ Ring → 𝑈 ∈ ( SubMnd ‘ 𝑀 ) )