| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.43 |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∨ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∨ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 2 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ) |
| 3 |
2
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ) ) |
| 4 |
|
andi |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∨ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 5 |
3 4
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∨ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∨ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 7 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
| 8 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) |
| 9 |
7 8
|
orbi12i |
⊢ ( ( 𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵 ) ↔ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ∨ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 10 |
1 6 9
|
3bitr4i |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵 ) ) |
| 11 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ∪ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 12 |
|
elun |
⊢ ( 𝑥 ∈ ( ∪ 𝐴 ∪ ∪ 𝐵 ) ↔ ( 𝑥 ∈ ∪ 𝐴 ∨ 𝑥 ∈ ∪ 𝐵 ) ) |
| 13 |
10 11 12
|
3bitr4i |
⊢ ( 𝑥 ∈ ∪ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( ∪ 𝐴 ∪ ∪ 𝐵 ) ) |
| 14 |
13
|
eqriv |
⊢ ∪ ( 𝐴 ∪ 𝐵 ) = ( ∪ 𝐴 ∪ ∪ 𝐵 ) |