Metamath Proof Explorer


Theorem uniun

Description: The class union of the union of two classes. Theorem 8.3 of Quine p. 53. (Contributed by NM, 20-Aug-1993)

Ref Expression
Assertion uniun ( 𝐴𝐵 ) = ( 𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 19.43 ( ∃ 𝑦 ( ( 𝑥𝑦𝑦𝐴 ) ∨ ( 𝑥𝑦𝑦𝐵 ) ) ↔ ( ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) ∨ ∃ 𝑦 ( 𝑥𝑦𝑦𝐵 ) ) )
2 elun ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ ( 𝑦𝐴𝑦𝐵 ) )
3 2 anbi2i ( ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) ↔ ( 𝑥𝑦 ∧ ( 𝑦𝐴𝑦𝐵 ) ) )
4 andi ( ( 𝑥𝑦 ∧ ( 𝑦𝐴𝑦𝐵 ) ) ↔ ( ( 𝑥𝑦𝑦𝐴 ) ∨ ( 𝑥𝑦𝑦𝐵 ) ) )
5 3 4 bitri ( ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) ↔ ( ( 𝑥𝑦𝑦𝐴 ) ∨ ( 𝑥𝑦𝑦𝐵 ) ) )
6 5 exbii ( ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) ↔ ∃ 𝑦 ( ( 𝑥𝑦𝑦𝐴 ) ∨ ( 𝑥𝑦𝑦𝐵 ) ) )
7 eluni ( 𝑥 𝐴 ↔ ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) )
8 eluni ( 𝑥 𝐵 ↔ ∃ 𝑦 ( 𝑥𝑦𝑦𝐵 ) )
9 7 8 orbi12i ( ( 𝑥 𝐴𝑥 𝐵 ) ↔ ( ∃ 𝑦 ( 𝑥𝑦𝑦𝐴 ) ∨ ∃ 𝑦 ( 𝑥𝑦𝑦𝐵 ) ) )
10 1 6 9 3bitr4i ( ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) ↔ ( 𝑥 𝐴𝑥 𝐵 ) )
11 eluni ( 𝑥 ( 𝐴𝐵 ) ↔ ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ ( 𝐴𝐵 ) ) )
12 elun ( 𝑥 ∈ ( 𝐴 𝐵 ) ↔ ( 𝑥 𝐴𝑥 𝐵 ) )
13 10 11 12 3bitr4i ( 𝑥 ( 𝐴𝐵 ) ↔ 𝑥 ∈ ( 𝐴 𝐵 ) )
14 13 eqriv ( 𝐴𝐵 ) = ( 𝐴 𝐵 )