| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluni | ⊢ ( 𝑢  ∈  ∪  𝐴  ↔  ∃ 𝑦 ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 2 | 1 | anbi2i | ⊢ ( ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  ∪  𝐴 )  ↔  ( 𝑧  ∈  𝑢  ∧  ∃ 𝑦 ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 3 | 2 | exbii | ⊢ ( ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  ∪  𝐴 )  ↔  ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  ∃ 𝑦 ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 4 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑧  ∈  𝑢  ∧  ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ( 𝑧  ∈  𝑢  ∧  ∃ 𝑦 ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 5 | 4 | bicomi | ⊢ ( ( 𝑧  ∈  𝑢  ∧  ∃ 𝑦 ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑢  ∧  ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  ∃ 𝑦 ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑢 ∃ 𝑦 ( 𝑧  ∈  𝑢  ∧  ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 7 |  | excom | ⊢ ( ∃ 𝑢 ∃ 𝑦 ( 𝑧  ∈  𝑢  ∧  ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑦 ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 8 |  | anass | ⊢ ( ( ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 )  ∧  𝑦  ∈  𝐴 )  ↔  ( 𝑧  ∈  𝑢  ∧  ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 9 |  | ancom | ⊢ ( ( ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 )  ∧  𝑦  ∈  𝐴 )  ↔  ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 ) ) ) | 
						
							| 10 | 8 9 | bitr3i | ⊢ ( ( 𝑧  ∈  𝑢  ∧  ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 ) ) ) | 
						
							| 11 | 10 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑦 ∃ 𝑢 ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 ) ) ) | 
						
							| 12 |  | exdistr | ⊢ ( ∃ 𝑦 ∃ 𝑢 ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 ) )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 ) ) ) | 
						
							| 13 | 7 11 12 | 3bitri | ⊢ ( ∃ 𝑢 ∃ 𝑦 ( 𝑧  ∈  𝑢  ∧  ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 ) ) ) | 
						
							| 14 |  | eluni | ⊢ ( 𝑧  ∈  ∪  𝑦  ↔  ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 ) ) | 
						
							| 15 | 14 | bicomi | ⊢ ( ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 )  ↔  𝑧  ∈  ∪  𝑦 ) | 
						
							| 16 | 15 | anbi2i | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 ) )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  ∪  𝑦 ) ) | 
						
							| 17 | 16 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  𝑦 ) )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  ∪  𝑦 ) ) | 
						
							| 18 | 6 13 17 | 3bitri | ⊢ ( ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  ∃ 𝑦 ( 𝑢  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  ∪  𝑦 ) ) | 
						
							| 19 |  | vuniex | ⊢ ∪  𝑦  ∈  V | 
						
							| 20 |  | eleq2 | ⊢ ( 𝑣  =  ∪  𝑦  →  ( 𝑧  ∈  𝑣  ↔  𝑧  ∈  ∪  𝑦 ) ) | 
						
							| 21 | 19 20 | ceqsexv | ⊢ ( ∃ 𝑣 ( 𝑣  =  ∪  𝑦  ∧  𝑧  ∈  𝑣 )  ↔  𝑧  ∈  ∪  𝑦 ) | 
						
							| 22 |  | exancom | ⊢ ( ∃ 𝑣 ( 𝑣  =  ∪  𝑦  ∧  𝑧  ∈  𝑣 )  ↔  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 ) ) | 
						
							| 23 | 21 22 | bitr3i | ⊢ ( 𝑧  ∈  ∪  𝑦  ↔  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 ) ) | 
						
							| 24 | 23 | anbi2i | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  ∪  𝑦 )  ↔  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 ) ) ) | 
						
							| 25 |  | 19.42v | ⊢ ( ∃ 𝑣 ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 ) )  ↔  ( 𝑦  ∈  𝐴  ∧  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 ) ) ) | 
						
							| 26 |  | ancom | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 ) )  ↔  ( ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 )  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 27 |  | anass | ⊢ ( ( ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 )  ∧  𝑦  ∈  𝐴 )  ↔  ( 𝑧  ∈  𝑣  ∧  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 28 | 26 27 | bitri | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 ) )  ↔  ( 𝑧  ∈  𝑣  ∧  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 29 | 28 | exbii | ⊢ ( ∃ 𝑣 ( 𝑦  ∈  𝐴  ∧  ( 𝑧  ∈  𝑣  ∧  𝑣  =  ∪  𝑦 ) )  ↔  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 30 | 24 25 29 | 3bitr2i | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  ∪  𝑦 )  ↔  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 31 | 30 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  ∪  𝑦 )  ↔  ∃ 𝑦 ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 32 |  | excom | ⊢ ( ∃ 𝑦 ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑣 ∃ 𝑦 ( 𝑧  ∈  𝑣  ∧  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 33 |  | exdistr | ⊢ ( ∃ 𝑣 ∃ 𝑦 ( 𝑧  ∈  𝑣  ∧  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  ∃ 𝑦 ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 34 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 35 |  | eqeq1 | ⊢ ( 𝑥  =  𝑣  →  ( 𝑥  =  ∪  𝑦  ↔  𝑣  =  ∪  𝑦 ) ) | 
						
							| 36 | 35 | anbi1d | ⊢ ( 𝑥  =  𝑣  →  ( ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 )  ↔  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 37 | 36 | exbidv | ⊢ ( 𝑥  =  𝑣  →  ( ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 )  ↔  ∃ 𝑦 ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 38 | 34 37 | elab | ⊢ ( 𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) }  ↔  ∃ 𝑦 ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) ) | 
						
							| 39 | 38 | bicomi | ⊢ ( ∃ 𝑦 ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 )  ↔  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) } ) | 
						
							| 40 | 39 | anbi2i | ⊢ ( ( 𝑧  ∈  𝑣  ∧  ∃ 𝑦 ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ( 𝑧  ∈  𝑣  ∧  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) } ) ) | 
						
							| 41 | 40 | exbii | ⊢ ( ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  ∃ 𝑦 ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) } ) ) | 
						
							| 42 | 33 41 | bitri | ⊢ ( ∃ 𝑣 ∃ 𝑦 ( 𝑧  ∈  𝑣  ∧  ( 𝑣  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) )  ↔  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) } ) ) | 
						
							| 43 | 31 32 42 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  ∪  𝑦 )  ↔  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) } ) ) | 
						
							| 44 | 3 18 43 | 3bitri | ⊢ ( ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  ∪  𝐴 )  ↔  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) } ) ) | 
						
							| 45 | 44 | abbii | ⊢ { 𝑧  ∣  ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  ∪  𝐴 ) }  =  { 𝑧  ∣  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) } ) } | 
						
							| 46 |  | df-uni | ⊢ ∪  ∪  𝐴  =  { 𝑧  ∣  ∃ 𝑢 ( 𝑧  ∈  𝑢  ∧  𝑢  ∈  ∪  𝐴 ) } | 
						
							| 47 |  | df-uni | ⊢ ∪  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) }  =  { 𝑧  ∣  ∃ 𝑣 ( 𝑧  ∈  𝑣  ∧  𝑣  ∈  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) } ) } | 
						
							| 48 | 45 46 47 | 3eqtr4i | ⊢ ∪  ∪  𝐴  =  ∪  { 𝑥  ∣  ∃ 𝑦 ( 𝑥  =  ∪  𝑦  ∧  𝑦  ∈  𝐴 ) } |