| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r1tr | ⊢ Tr  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) | 
						
							| 2 |  | rankidb | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) ) | 
						
							| 3 |  | trss | ⊢ ( Tr  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  →  ( 𝐴  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  →  𝐴  ⊆  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) ) ) | 
						
							| 4 | 1 2 3 | mpsyl | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ⊆  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) ) | 
						
							| 5 |  | rankdmr1 | ⊢ ( rank ‘ 𝐴 )  ∈  dom  𝑅1 | 
						
							| 6 |  | r1sucg | ⊢ ( ( rank ‘ 𝐴 )  ∈  dom  𝑅1  →  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  =  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  =  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) | 
						
							| 8 | 4 7 | sseqtrdi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ⊆  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 9 |  | sspwuni | ⊢ ( 𝐴  ⊆  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  ↔  ∪  𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∪  𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 11 |  | fvex | ⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  ∈  V | 
						
							| 12 | 11 | elpw2 | ⊢ ( ∪  𝐴  ∈  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) )  ↔  ∪  𝐴  ⊆  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 13 | 10 12 | sylibr | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∪  𝐴  ∈  𝒫  ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | 
						
							| 14 | 13 7 | eleqtrrdi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∪  𝐴  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) ) ) | 
						
							| 15 |  | r1elwf | ⊢ ( ∪  𝐴  ∈  ( 𝑅1 ‘ suc  ( rank ‘ 𝐴 ) )  →  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 17 |  | pwwf | ⊢ ( ∪  𝐴  ∈  ∪  ( 𝑅1  “  On )  ↔  𝒫  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 18 |  | pwuni | ⊢ 𝐴  ⊆  𝒫  ∪  𝐴 | 
						
							| 19 |  | sswf | ⊢ ( ( 𝒫  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  𝐴  ⊆  𝒫  ∪  𝐴 )  →  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 20 | 18 19 | mpan2 | ⊢ ( 𝒫  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 21 | 17 20 | sylbi | ⊢ ( ∪  𝐴  ∈  ∪  ( 𝑅1  “  On )  →  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 22 | 16 21 | impbii | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ↔  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) |