| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unieq |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ∪ ( 𝐴 × 𝐵 ) = ∪ ∅ ) |
| 2 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 3 |
1 2
|
eqtrdi |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ → ∪ ( 𝐴 × 𝐵 ) = ∅ ) |
| 4 |
|
n0 |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) ) |
| 5 |
|
elxp3 |
⊢ ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 = 𝑧 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 6 |
|
elssuni |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ⊆ ∪ ( 𝐴 × 𝐵 ) ) |
| 7 |
|
vex |
⊢ 𝑥 ∈ V |
| 8 |
|
vex |
⊢ 𝑦 ∈ V |
| 9 |
7 8
|
opnzi |
⊢ 〈 𝑥 , 𝑦 〉 ≠ ∅ |
| 10 |
|
ssn0 |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ⊆ ∪ ( 𝐴 × 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ≠ ∅ ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 11 |
6 9 10
|
sylancl |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 12 |
11
|
adantl |
⊢ ( ( 〈 𝑥 , 𝑦 〉 = 𝑧 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 13 |
12
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝑥 , 𝑦 〉 = 𝑧 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 14 |
5 13
|
sylbi |
⊢ ( 𝑧 ∈ ( 𝐴 × 𝐵 ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 15 |
14
|
exlimiv |
⊢ ( ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 16 |
4 15
|
sylbi |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ∪ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 17 |
16
|
necon4i |
⊢ ( ∪ ( 𝐴 × 𝐵 ) = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
| 18 |
3 17
|
impbii |
⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ∪ ( 𝐴 × 𝐵 ) = ∅ ) |