Step |
Hyp |
Ref |
Expression |
1 |
|
xpeq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐴 ) = ( ∅ × 𝐴 ) ) |
2 |
|
0xp |
⊢ ( ∅ × 𝐴 ) = ∅ |
3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐴 × 𝐴 ) = ∅ ) |
4 |
|
unieq |
⊢ ( ( 𝐴 × 𝐴 ) = ∅ → ∪ ( 𝐴 × 𝐴 ) = ∪ ∅ ) |
5 |
4
|
unieqd |
⊢ ( ( 𝐴 × 𝐴 ) = ∅ → ∪ ∪ ( 𝐴 × 𝐴 ) = ∪ ∪ ∅ ) |
6 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
7 |
6
|
unieqi |
⊢ ∪ ∪ ∅ = ∪ ∅ |
8 |
7 6
|
eqtri |
⊢ ∪ ∪ ∅ = ∅ |
9 |
|
eqtr |
⊢ ( ( ∪ ∪ ( 𝐴 × 𝐴 ) = ∪ ∪ ∅ ∧ ∪ ∪ ∅ = ∅ ) → ∪ ∪ ( 𝐴 × 𝐴 ) = ∅ ) |
10 |
|
eqtr |
⊢ ( ( ∪ ∪ ( 𝐴 × 𝐴 ) = ∅ ∧ ∅ = 𝐴 ) → ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 ) |
11 |
10
|
expcom |
⊢ ( ∅ = 𝐴 → ( ∪ ∪ ( 𝐴 × 𝐴 ) = ∅ → ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 ) ) |
12 |
11
|
eqcoms |
⊢ ( 𝐴 = ∅ → ( ∪ ∪ ( 𝐴 × 𝐴 ) = ∅ → ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 ) ) |
13 |
9 12
|
syl5com |
⊢ ( ( ∪ ∪ ( 𝐴 × 𝐴 ) = ∪ ∪ ∅ ∧ ∪ ∪ ∅ = ∅ ) → ( 𝐴 = ∅ → ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 ) ) |
14 |
5 8 13
|
sylancl |
⊢ ( ( 𝐴 × 𝐴 ) = ∅ → ( 𝐴 = ∅ → ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 ) ) |
15 |
3 14
|
mpcom |
⊢ ( 𝐴 = ∅ → ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 ) |
16 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
17 |
|
xpnz |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ ∅ ) ↔ ( 𝐴 × 𝐴 ) ≠ ∅ ) |
18 |
|
unixp |
⊢ ( ( 𝐴 × 𝐴 ) ≠ ∅ → ∪ ∪ ( 𝐴 × 𝐴 ) = ( 𝐴 ∪ 𝐴 ) ) |
19 |
|
unidm |
⊢ ( 𝐴 ∪ 𝐴 ) = 𝐴 |
20 |
18 19
|
eqtrdi |
⊢ ( ( 𝐴 × 𝐴 ) ≠ ∅ → ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 ) |
21 |
17 20
|
sylbi |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ ∅ ) → ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 ) |
22 |
16 16 21
|
sylancbr |
⊢ ( ¬ 𝐴 = ∅ → ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 ) |
23 |
15 22
|
pm2.61i |
⊢ ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 |