Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
2 |
|
df-lim |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) |
3 |
2
|
biimpri |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) → Lim 𝐴 ) |
4 |
3
|
3exp |
⊢ ( Ord 𝐴 → ( 𝐴 ≠ ∅ → ( 𝐴 = ∪ 𝐴 → Lim 𝐴 ) ) ) |
5 |
1 4
|
syl5bir |
⊢ ( Ord 𝐴 → ( ¬ 𝐴 = ∅ → ( 𝐴 = ∪ 𝐴 → Lim 𝐴 ) ) ) |
6 |
5
|
com23 |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 → ( ¬ 𝐴 = ∅ → Lim 𝐴 ) ) ) |
7 |
6
|
imp |
⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( ¬ 𝐴 = ∅ → Lim 𝐴 ) ) |
8 |
7
|
orrd |
⊢ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) → ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) |
9 |
8
|
ex |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 → ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
10 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
11 |
10
|
eqcomi |
⊢ ∅ = ∪ ∅ |
12 |
|
id |
⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) |
13 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
14 |
11 12 13
|
3eqtr4a |
⊢ ( 𝐴 = ∅ → 𝐴 = ∪ 𝐴 ) |
15 |
|
limuni |
⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |
16 |
14 15
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ Lim 𝐴 ) → 𝐴 = ∪ 𝐴 ) |
17 |
9 16
|
impbid1 |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |