Metamath Proof Explorer


Theorem unizlim

Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003)

Ref Expression
Assertion unizlim ( Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 df-ne ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ )
2 df-lim ( Lim 𝐴 ↔ ( Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴 ) )
3 2 biimpri ( ( Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴 ) → Lim 𝐴 )
4 3 3exp ( Ord 𝐴 → ( 𝐴 ≠ ∅ → ( 𝐴 = 𝐴 → Lim 𝐴 ) ) )
5 1 4 syl5bir ( Ord 𝐴 → ( ¬ 𝐴 = ∅ → ( 𝐴 = 𝐴 → Lim 𝐴 ) ) )
6 5 com23 ( Ord 𝐴 → ( 𝐴 = 𝐴 → ( ¬ 𝐴 = ∅ → Lim 𝐴 ) ) )
7 6 imp ( ( Ord 𝐴𝐴 = 𝐴 ) → ( ¬ 𝐴 = ∅ → Lim 𝐴 ) )
8 7 orrd ( ( Ord 𝐴𝐴 = 𝐴 ) → ( 𝐴 = ∅ ∨ Lim 𝐴 ) )
9 8 ex ( Ord 𝐴 → ( 𝐴 = 𝐴 → ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) )
10 uni0 ∅ = ∅
11 10 eqcomi ∅ =
12 id ( 𝐴 = ∅ → 𝐴 = ∅ )
13 unieq ( 𝐴 = ∅ → 𝐴 = ∅ )
14 11 12 13 3eqtr4a ( 𝐴 = ∅ → 𝐴 = 𝐴 )
15 limuni ( Lim 𝐴𝐴 = 𝐴 )
16 14 15 jaoi ( ( 𝐴 = ∅ ∨ Lim 𝐴 ) → 𝐴 = 𝐴 )
17 9 16 impbid1 ( Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) )