Step |
Hyp |
Ref |
Expression |
1 |
|
elunop |
⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
2 |
1
|
simprbi |
⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐴 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ih 𝑦 ) = ( 𝐴 ·ih 𝑦 ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ih 𝑦 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐵 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·ih 𝑦 ) = ( 𝐴 ·ih 𝐵 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
12 |
7 11
|
rspc2v |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
14 |
3 13
|
mpd |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) |