Metamath Proof Explorer


Theorem unopab

Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002)

Ref Expression
Assertion unopab ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝜓 ) }

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑧 = 𝑤 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ) )
2 1 anbi1d ( 𝑧 = 𝑤 → ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) )
3 2 2exbidv ( 𝑧 = 𝑤 → ( ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) )
4 1 anbi1d ( 𝑧 = 𝑤 → ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) )
5 4 2exbidv ( 𝑧 = 𝑤 → ( ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) )
6 3 5 unabw ( { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) } ∪ { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) } ) = { 𝑤 ∣ ( ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) }
7 19.43 ( ∃ 𝑥 ( ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) ↔ ( ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) )
8 andi ( ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝜑𝜓 ) ) ↔ ( ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) )
9 8 exbii ( ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝜑𝜓 ) ) ↔ ∃ 𝑦 ( ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) )
10 19.43 ( ∃ 𝑦 ( ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) ↔ ( ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) )
11 9 10 bitr2i ( ( ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝜑𝜓 ) ) )
12 11 exbii ( ∃ 𝑥 ( ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) ↔ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝜑𝜓 ) ) )
13 7 12 bitr3i ( ( ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) ↔ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝜑𝜓 ) ) )
14 13 abbii { 𝑤 ∣ ( ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ∨ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) ) } = { 𝑤 ∣ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝜑𝜓 ) ) }
15 6 14 eqtri ( { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) } ∪ { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) } ) = { 𝑤 ∣ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝜑𝜓 ) ) }
16 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) }
17 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) }
18 16 17 uneq12i ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) = ( { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) } ∪ { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) } )
19 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝜓 ) } = { 𝑤 ∣ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝜑𝜓 ) ) }
20 15 18 19 3eqtr4i ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝜑𝜓 ) }