| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unopf1o | ⊢ ( 𝑇  ∈  UniOp  →  𝑇 :  ℋ –1-1-onto→  ℋ ) | 
						
							| 2 |  | f1ocnvfv2 | ⊢ ( ( 𝑇 :  ℋ –1-1-onto→  ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐵  ∈   ℋ )  →  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 4 | 3 | 3adant2 | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) )  =  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐵 ) ) | 
						
							| 6 |  | f1ocnv | ⊢ ( 𝑇 :  ℋ –1-1-onto→  ℋ  →  ◡ 𝑇 :  ℋ –1-1-onto→  ℋ ) | 
						
							| 7 |  | f1of | ⊢ ( ◡ 𝑇 :  ℋ –1-1-onto→  ℋ  →  ◡ 𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 8 | 1 6 7 | 3syl | ⊢ ( 𝑇  ∈  UniOp  →  ◡ 𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐵  ∈   ℋ )  →  ( ◡ 𝑇 ‘ 𝐵 )  ∈   ℋ ) | 
						
							| 10 | 9 | 3adant2 | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ◡ 𝑇 ‘ 𝐵 )  ∈   ℋ ) | 
						
							| 11 |  | unop | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ  ∧  ( ◡ 𝑇 ‘ 𝐵 )  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) )  =  ( 𝐴  ·ih  ( ◡ 𝑇 ‘ 𝐵 ) ) ) | 
						
							| 12 | 10 11 | syld3an3 | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) )  =  ( 𝐴  ·ih  ( ◡ 𝑇 ‘ 𝐵 ) ) ) | 
						
							| 13 | 5 12 | eqtr3d | ⊢ ( ( 𝑇  ∈  UniOp  ∧  𝐴  ∈   ℋ  ∧  𝐵  ∈   ℋ )  →  ( ( 𝑇 ‘ 𝐴 )  ·ih  𝐵 )  =  ( 𝐴  ·ih  ( ◡ 𝑇 ‘ 𝐵 ) ) ) |