Step |
Hyp |
Ref |
Expression |
1 |
|
unopf1o |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) |
2 |
|
f1ocnvfv2 |
⊢ ( ( 𝑇 : ℋ –1-1-onto→ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) = 𝐵 ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) = 𝐵 ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) = 𝐵 ) |
5 |
4
|
oveq2d |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ) |
6 |
|
f1ocnv |
⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ –1-1-onto→ ℋ ) |
7 |
|
f1of |
⊢ ( ◡ 𝑇 : ℋ –1-1-onto→ ℋ → ◡ 𝑇 : ℋ ⟶ ℋ ) |
8 |
1 6 7
|
3syl |
⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ ⟶ ℋ ) |
9 |
8
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐵 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
10 |
9
|
3adant2 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ◡ 𝑇 ‘ 𝐵 ) ∈ ℋ ) |
11 |
|
unop |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ ( ◡ 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) ) = ( 𝐴 ·ih ( ◡ 𝑇 ‘ 𝐵 ) ) ) |
12 |
10 11
|
syld3an3 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ ( ◡ 𝑇 ‘ 𝐵 ) ) ) = ( 𝐴 ·ih ( ◡ 𝑇 ‘ 𝐵 ) ) ) |
13 |
5 12
|
eqtr3d |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ◡ 𝑇 ‘ 𝐵 ) ) ) |