| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unoplin |
⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp ) |
| 2 |
|
lnopf |
⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 4 |
|
cnvunop |
⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 ∈ UniOp ) |
| 5 |
|
unoplin |
⊢ ( ◡ 𝑇 ∈ UniOp → ◡ 𝑇 ∈ LinOp ) |
| 6 |
|
lnopf |
⊢ ( ◡ 𝑇 ∈ LinOp → ◡ 𝑇 : ℋ ⟶ ℋ ) |
| 7 |
4 5 6
|
3syl |
⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ ⟶ ℋ ) |
| 8 |
|
unopadj |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) |
| 9 |
8
|
3expib |
⊢ ( 𝑇 ∈ UniOp → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) ) |
| 10 |
9
|
ralrimivv |
⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) |
| 11 |
|
adjeq |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ◡ 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) → ( adjℎ ‘ 𝑇 ) = ◡ 𝑇 ) |
| 12 |
3 7 10 11
|
syl3anc |
⊢ ( 𝑇 ∈ UniOp → ( adjℎ ‘ 𝑇 ) = ◡ 𝑇 ) |