| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							unoplin | 
							⊢ ( 𝑇  ∈  UniOp  →  𝑇  ∈  LinOp )  | 
						
						
							| 2 | 
							
								
							 | 
							unopf1o | 
							⊢ ( 𝑇  ∈  UniOp  →  𝑇 :  ℋ –1-1-onto→  ℋ )  | 
						
						
							| 3 | 
							
								
							 | 
							f1of | 
							⊢ ( 𝑇 :  ℋ –1-1-onto→  ℋ  →  𝑇 :  ℋ ⟶  ℋ )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							⊢ ( 𝑇  ∈  UniOp  →  𝑇 :  ℋ ⟶  ℋ )  | 
						
						
							| 5 | 
							
								
							 | 
							nmop0h | 
							⊢ ( (  ℋ  =  0ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( normop ‘ 𝑇 )  =  0 )  | 
						
						
							| 6 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqeltrdi | 
							⊢ ( (  ℋ  =  0ℋ  ∧  𝑇 :  ℋ ⟶  ℋ )  →  ( normop ‘ 𝑇 )  ∈  ℝ )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							sylan2 | 
							⊢ ( (  ℋ  =  0ℋ  ∧  𝑇  ∈  UniOp )  →  ( normop ‘ 𝑇 )  ∈  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							df-ne | 
							⊢ (  ℋ  ≠  0ℋ  ↔  ¬   ℋ  =  0ℋ )  | 
						
						
							| 10 | 
							
								
							 | 
							nmopun | 
							⊢ ( (  ℋ  ≠  0ℋ  ∧  𝑇  ∈  UniOp )  →  ( normop ‘ 𝑇 )  =  1 )  | 
						
						
							| 11 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqeltrdi | 
							⊢ ( (  ℋ  ≠  0ℋ  ∧  𝑇  ∈  UniOp )  →  ( normop ‘ 𝑇 )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							sylanbr | 
							⊢ ( ( ¬   ℋ  =  0ℋ  ∧  𝑇  ∈  UniOp )  →  ( normop ‘ 𝑇 )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							pm2.61ian | 
							⊢ ( 𝑇  ∈  UniOp  →  ( normop ‘ 𝑇 )  ∈  ℝ )  | 
						
						
							| 15 | 
							
								
							 | 
							elbdop2 | 
							⊢ ( 𝑇  ∈  BndLinOp  ↔  ( 𝑇  ∈  LinOp  ∧  ( normop ‘ 𝑇 )  ∈  ℝ ) )  | 
						
						
							| 16 | 
							
								1 14 15
							 | 
							sylanbrc | 
							⊢ ( 𝑇  ∈  UniOp  →  𝑇  ∈  BndLinOp )  |