Step |
Hyp |
Ref |
Expression |
1 |
|
elunop |
⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
2 |
1
|
simplbi |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –onto→ ℋ ) |
3 |
|
fof |
⊢ ( 𝑇 : ℋ –onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) |
4 |
2 3
|
syl |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
5 |
|
unop |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑥 ·ih 𝑥 ) ) |
6 |
5
|
3anidm23 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑥 ·ih 𝑥 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑥 ·ih 𝑥 ) ) |
8 |
|
unop |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) |
9 |
8
|
3anidm23 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) |
10 |
9
|
3adant2 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) |
11 |
7 10
|
oveq12d |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) ) |
12 |
|
unop |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
13 |
|
unop |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑦 ·ih 𝑥 ) ) |
14 |
13
|
3com23 |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑦 ·ih 𝑥 ) ) |
15 |
12 14
|
oveq12d |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) |
16 |
11 15
|
oveq12d |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) − ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) ) = ( ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) − ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) ) |
17 |
16
|
3expb |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) − ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) ) = ( ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) − ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) ) |
18 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
19 |
|
ffvelrn |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
20 |
18 19
|
anim12dan |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
21 |
4 20
|
sylan |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
22 |
|
normlem9at |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) − ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) − ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
24 |
|
normlem9at |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = ( ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) − ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = ( ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) − ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) ) |
26 |
17 23 25
|
3eqtr4rd |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
27 |
26
|
eqeq1d |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ) ) |
28 |
|
hvsubcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 −ℎ 𝑦 ) ∈ ℋ ) |
29 |
|
his6 |
⊢ ( ( 𝑥 −ℎ 𝑦 ) ∈ ℋ → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ ( 𝑥 −ℎ 𝑦 ) = 0ℎ ) ) |
30 |
28 29
|
syl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ ( 𝑥 −ℎ 𝑦 ) = 0ℎ ) ) |
31 |
|
hvsubeq0 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 −ℎ 𝑦 ) = 0ℎ ↔ 𝑥 = 𝑦 ) ) |
32 |
30 31
|
bitrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ 𝑥 = 𝑦 ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ 𝑥 = 𝑦 ) ) |
34 |
|
hvsubcl |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
35 |
|
his6 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ → ( ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) = 0ℎ ) ) |
36 |
34 35
|
syl |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) = 0ℎ ) ) |
37 |
|
hvsubeq0 |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) = 0ℎ ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
38 |
36 37
|
bitrd |
⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
39 |
21 38
|
syl |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
40 |
27 33 39
|
3bitr3rd |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
41 |
40
|
biimpd |
⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
42 |
41
|
ralrimivva |
⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
43 |
|
dff13 |
⊢ ( 𝑇 : ℋ –1-1→ ℋ ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
44 |
4 42 43
|
sylanbrc |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1→ ℋ ) |
45 |
|
df-f1o |
⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ ↔ ( 𝑇 : ℋ –1-1→ ℋ ∧ 𝑇 : ℋ –onto→ ℋ ) ) |
46 |
44 2 45
|
sylanbrc |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) |